

2000 Marking Scheme

	2000 Int2 Chemistry Marking Scheme							
MC Qu	Answer	% Pupils Correct	Reasoning					
1	A	67	No. of protons= atomic number= 23No. of neutrons= mass number - atomic number= 51-23 = 28No. of electrons= atomic number - charge= 23 - 0 = 23					
2	D	55	Isotopes Same atomic number but different mass number Same number of protons but different number of neutrons					
3	В	27	 ☑A Sodium is a metal and chlorine is a non-metal ∴ sodium chloride is ionic ☑B Nitrogen and oxygen are both non-metals and form diatomic molecules of NO ☑C Silicon and chlorine are both non-metals and form pentatomic molecules of SiCl4 ☑D Sulphur and oxygen are both non-metals and form triatomic molecules of SO₃ 					
4	D	42	 In exothermic reactions, heat is released to the surroundings B In exothermic reactions, heat is released to the surroundings C If products have more chemical energy than the reactants, heat must be taken in (endo) D If products have less chemical energy than the reactants, heat must be taken in (exo) 					
5	С	48	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{1.00 - 0.25}{20 - 0}$ = $\frac{0.75}{20}$ = 0.0375 mol l ⁻¹ s ⁻¹					
6	A	89	Fractional distillation separates chemicals which have different boiling points.					
7	С	36	 Image: A CH4 is most likely to be found in natural gas B C3H8 is most likely to be found in bottled camping gas C C8H18 is most likely to be found in petrol D C14H30 is most likely to be found in kerosene 					
8	A	38	Hydrocarbon with formula mass = 30 ∴ hydrocarbon is C₂H ₆ ☑A C₂H ₆ is ethane and is a gas a room temperature with a boiling point of -89°C ☑B Small alkanes have a low viscosity (thickness) ☑C Ethane has no C=C double bond and cannot take part in addition polymerisation ☑D Ethane has non C=C double bond so does not decolourise bromine water					
9	D	36	 Criticle Has how c=c double bond so does not decordance brownine watch A Hydration: Water is added across a C=C double bond B Hydrolysis: Big molecule splits into smaller molecules with water added across the break C Dehydration: Water is removed from a molecule leaving behind a C=C double bond D Condensation: Small molecules join together with water removed at the join 					
10	A	31	 A Hydration: Water is added across a C=C double bond B Hydrolysis: Big molecule splits into smaller molecules with water added across the break C Dehydration: Water is removed from a molecule leaving behind a C=C double bond D Condensation: Small molecules join together with water removed at the join 					
11	A	39	 Contensation: Sinal inforced as join together with water removed at the join A Each molecule of fat contains three ester bonds between glycerol and 3 fatty acids B Protein contains peptide links and not ester links C Starch is a carbohydrate not an ester D Sucrose is a carbohydrate sugar and not an ester 					
12	D	67	 A Carbohydrates have hydrogen and oxygen in the ratio of 2:1 (like water) B Carbohydrates have hydrogen and oxygen in the ratio of 2:1 (like water) C Carbohydrates have hydrogen and oxygen in the ratio of 2:1 (like water) D Glucose is a carbohydrate as it has hydrogen and oxygen in a ratio of 2:1 					
13	С	78	Fats and oils contain ester bonds. On hydrolysis of these ester bonds each molecule of fat/oil releases one molecule of glycerol and 3 molecules of fatty acids					

14	В	71	\blacksquare A but-2-ene has the formula C_4H_8 but molecule drawn has the formula C_5H_{10} \blacksquare B pent-2-ene: 5 carbons with C=C double bond between C_2 and C_3 \blacksquare C but-3-ene is incorrectly named as C=C double bond must have the lowest numbering system \blacksquare D pent 3 and is incorrectly names as C=C double bond must have the lowest number system					
15	С	74	 D pent-3-ene is incorrectly names as C=C double bond must have the lowest number system A polystyrene is an insoluble addition polymer B nylon is an insoluble polyamide condensation polymer C poly(ethenol) is a soluble polymer D Kevlar is a very strong insoluble polymer 					
16	С	80	H H H C H C H C H C H C H C H C					
17	С	52	■ A Redox has both Reduction: $2H^+ + 2e^- \rightarrow H_2$ and Oxidation: $Zn \rightarrow Zn^{2+} + 2e^-$ ■ B Redox has both Reduction: $Br_2 + 2e^- \rightarrow 2Br^-$ and Oxidation: $Fe^{2+} \rightarrow Fe^{3+} + e^-$ ■ C Precipitation Reaction: ions come together to form insoluble solid ■ D Redox has both Reduction: $2H^+ + 2e^- \rightarrow H_2$ and Oxidation: $Zn \rightarrow Zn^{2+} + 2e^-$					
18	D	32	NA calcium oxide (metal oxide) dissolves in water to form an alkali NB carbon dioxide (non-metal oxide) dissolves in water to form an acid NC sulphur dioxide (non-metal oxide) dissolves in water to form an acid ND zinc oxide is insoluble in water so will not change the pH of water from pH=7					
19	D	42	포A At equilibrium, the rate of the forward and reverse reactions are equal 포B water has little dissociation into ions and the majority stays as molecules 포C Concentration of water if much greater than hydrogen ions 코D At equilibrium, concentration of reactants and products are constant					
20	A	50	A salt is made by the replacing of the H ⁺ ion in an acid with a metal ion or ammonium ion. ☑A ammonium chloride is made by neutralisation of ammonia with hydrochloric acid ☑B oxides cannot be made by reaction with an acid ☑C hydrogen chloride is a gas which is not made by reaction with an acid ☑D hydroxides cannot be made by reaction with an acid					
21	С	59	 A soluble gases would not pass through the water and would not be removed B Gases would not be able to escape up the 2nd tube and leave the test tube C Soluble gases would dissolve in water and insoluble gas would leave by 2nd tube D Gases would not be able to escape up the 2nd gas tube and leave the test tube 					
22	A	22	 A If oxygen is reacted out of air, nitrogen would make up the vast majority of remaining B Magnesium burns to form solid magnesium oxide not carbon dioxide C Most of the oxygen is used up so no more than 1% would be left D Most of the oxygen is used up so no more than 1% would be left 					
23	С	45	 A Glucose C₆H₁₂O₆ is covalent molecule so does not speed up corrosion as it is not ionic B Zinc would sacrificially protect the iron for rusting C Adding an electrolyte like potassium nitrate will increase the rate of rusting D Negative terminal of battery will prevent rusting by cathodic protection 					
24	D	79	 A electrons will flow from more reactive copper (Z) to less reactive gold (Y) B electrons will flow from more reactive tin (Z) to less reactive copper (Y) C electrons will flow from more reactive tin (Z) to less reactive gold (Y) D electrons will flow from more reactive tin (Y) to less reactive copper (Z) 					
25	В	73	concentration = $\frac{no. of mol}{volume}$ = $\frac{0.25 mol}{0.5 litres}$ = 0.5 mol l ⁻¹					

	Questions 26 and 27 are Grid Questions.					
•	• This style of question was dropped after the 2002 Int2 exam.					
•	• The style of question is no longer used but the content of the question can still be					
	asked in future exams.					
		A Chlorine is a non-metal in group 7 and forms 1 negative Cl ⁻ chloride ions				
		E B Calcium is a metal in group 2 and forms 2 positive Ca^{2+} calcium ions				
26a	F	E C Oxygen is a non-metal in group 6 and forms 2 negative O^{2-} oxide ions				
		☑D Phosphorous is a non-metal in group 5 and forms 3 negative P ³⁻ phosphide ions ☑E Sodium is a metal in group 1 and forms 1 positive Na ⁺ sodium ions				
		Solum is a meral in group 1 and forms 1 positive Na solum ions EF Sulphur is a non-metal in group 6 and forms 2 negative S ²⁻ sulphide ions				
		Example is a non-metal which does not react with water				
		☑B metals which react with water form alkalis				
266	B+E	🗷C oxygen is a non-metal which does not react with water				
200		🗷 D phosphorus is a non-metal which does not react with water				
	(both for 1 mark)	earrowE metals which react with water form alkalis				
		EF sulphur is a non-metal which does not react with water				
	C+E	■A Chlorine has electron arrangement 2,8,7 and forms Cl ⁻ ions (2,8,8). Neon is 2,8				
		■B Calcium has electron arrangement 2,8,8,2 and forms Ca ²⁺ ions (2,8,8). Neon is 2,8				
26c		Image: Construction and the second				
		 ✓E Sodium has electron arrangement 2,8,1 and forms Na⁺ ions (2,8). Neon is 2,8 ✓F Sulphur has electron arrangement 2,8,6 and forms S²⁻ ions (2,8,8). Neon is 2,8 				
		En Suprui has electron arrangement 2,8,0 and forms 5 ions (2,8,8). Neon is 2,8 EXA Molecular covalent bonding due to low b.pt. and no conduction as solid or liquid				
	В	☑B Ionic bonding due to no conduction as solid but conduction as a liquid				
27		SC Metallic bonding as substance conducts as both solid and liquid				
27a		ID Molecular covalent bonding due to no conduction as solid or liquid and low(ish) b.pt.				
		E Covalent network bonding due to no conduction as solid or liquid and very high m.pt				
		EF Molecular covalent bonding due to low b.pt. and no conduction as solid or liquid				
		🗷 A Molecular covalent bonding due to low b.pt. and no conduction as solid or liquid				
	Е	B Ionic bonding due to no conduction as solid but conduction as a liquid				
27b		EC Metallic bonding as substance conducts as both solid and liquid				
270		D Molecular covalent bonding due to no conduction as solid or liquid and low(ish) b.pt.				
		☑E Covalent network bonding due to no conduction as solid or liquid and very high m.pt				
		EF Molecular covalent bonding due to low b.pt. and no conduction as solid or liquid				

	2000 Int2 Chemistry Marking Scheme						
Long Qu	Answer	Reasoning					
1a	Methyl ethanoate	$\begin{array}{c} H & O & H & H & O & H \\ H - C - OH + & C - C - H \longrightarrow H - C - O - C - C - H \\ H & HO & H & H \\ methanol & ethanoic acid & methyl ethanoate \\ & + H_2O \end{array}$					
1b	н ОНН H—C—C—C—Н Н Н Н	Same molecular formula e.g. C_3H_8O Isomers Same molecular formula Different structural formula Propan-1-ol: Primary alcohol with -OH group attached to C_1 of 3 carbons Propan-2-ol: Secondary alcohol with -OH group attached to C_2 of 3 carbons					
2a	Sulphur dioxide dissolves to from acid rain	Sulphur in fossil fuels burns to form sulphur dioxide. Sulphur dioxide dissolves in rain water to form acid rain					
2b	Reduction	Copper ions in $Cu^{2+}O^{2-}$ are reduced to form Cu atoms: $Cu^{2+} + 2e^- \rightarrow Cu$					
2c	Any metal from:	potassium sodium lithium calcium magnesium aluminium Any metal above zinc in the electrochemical series cannot be made by heating with carbon and is made by (molten) electrolysis					
3a	In same group of periodic table	Elements in the same group of the periodic table have the same chemical properties e.g. alkali metals (group 1) and noble gases (group 0)					
3b	Answer to include:	The relative atomic mass is the average mass of all the different isotopes of strontium. Each individual isotope has a mass which is a whole number.					
4a	Nitrogen Hydrogen Unreacted nitrogen + hydrogen Ammonia Nitric acid Ammonium nitrate	Problem Solving information transfer question					
4b	Fertilisers	Fertilisers are soluble compounds containing the following elements: Nitrogen Phosphorus Potassium					
4c	Diagram showing:	HONOR HONOH					
5a	Precipitation	Precipitation: When two ions come together and form an insoluble solid.					

		Write down Formulae of elements	Write down Valency below each ion		Put in Cross-over Arrows		Follow arrows and cancel down to get formula
5b	SnF₂	Sn F	Sn 2	F 1	Sn 2	F 1	SnF₂
5c	144g	1mol Na2PO3F = (2>	×23) + (1x	31) + (3x	16) + (1×1	9) = 46 +	31 + 48 + 19 = 144g
6a	More fossil fuels are burned		urning of hy being cut d	own preve			form CO2 s reducing CO2 levels
6b	145.5kg	6CO ₂ + 6mol 1mol 4545.5mol 1mol O ₂ = 2x16 = 32g	of mol = 6H ₂ C	gfm 	→ C	6H ₁₂ C	545.5mol D6 + 602 ^{6mol} 1mol 4545.5mol 4g = 145.5kg
7a	condensation	H-O-CH₂ Н —О-((р ОП	condensat polymerisa O 	ion H ₂ tion	
7b	Н Н Н Н Н Н Н - С - С - С - С - С - С - С - С - С - С	$ \begin{array}{c c} H & H \\ - & - \\ C = C \\ - & - \\ H & CH_2 \\ - & CHO \\ \hline Monomer \end{array} $	нн	H C H - C H - C H - C H	H H 	H 	H H - C - C
8a	Zinc is higher than iron in electrochemical series. Electrons travel from zinc to iron to protect iron	Zinc is higher up tl Zinc sacrificially p Electrons from thi	rotects ir s corrosic	on as zin Zn → Z on preven	c corrode In ²⁺ + 2e ⁻ t the iron	s to forn 1 from ru	n Zn²+ sting
8b	Answer to include:	Cracking splits less use hydrocarbons some of v C10H22 saturated	which are un		+	into more u C5H12 saturated	useful smaller + C3H6 unsaturated
9a	C ₅ H ₁₂ O	Molecular formula of the compound	is the rat	io of ato	ms but giv	ves no clu	ies to the structure
9b	Carbon monoxide or soot (carbon)	Carbon monoxide, soo ⁻			•		l formed due to or complete combustion

		Catalytic convertors catalyse the cleaning up of pollutant gases in exhaust gases:							
9c	Lead poisons the catalytic convertor	Carbon monoxide \rightarrow Carbon dioxide Nitrogen oxides \rightarrow Nitrogen							
		Unburnt hydrocarbons \rightarrow Carbon dioxide + water							
9d	Answers to include:	 (i) As the distance from the road increases, the mass of lead decreases (ii) As the soil depth increases, the mass of lead decreases 							
10a	blue \rightarrow brick red	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
10b	hot water 10cm ³ starch solution	In a fair test • same volume of starch solution • same concentration of starch solution • same temperature of hot water • same time each tube in water bath							
11a	Substance which burns to give out energy	A fuels is any substance which burns to give out energy e.g. heat energy							
11b	$4AI + 3O_2 \rightarrow 2AI_2O_3$	$4AI + 3O_2 \rightarrow 2AI_2O_3$							
11c	Neutralisation	Neutralisation: H ⁺ ions in acid react to become H ₂ O water: acid + metal hydroxide (alkali) -> salt + water acid + metal oxide -> salt + water acid + metal carbonate -> salt + water + carbon dioxide							
12a	measuring cylinder • • • • • • • • • • • • • • • • • • •	Gases which are insoluble in water can be collected under water as shown opposite e.g. oxygen, nitrogen, noble gases Gases which are soluble in water should be collected in a syringe e.g. nitrogen dioxide, ammonia, sulphur dioxide and carbon dioxide • Carbon Dioxide is slightly soluble in water so the best way to collect it is in a syringe and not over water							
12b	Nitrogen dioxide in U-tube Oxygen above water in tube	Nitrogen dioxide collects in the U-tube as NO ₂ condenses on the cold surface due to the ice/salt mixture. Oxygen does not condense at this temperature as passes through the delivery tube to the tube above the water.							
13a	Colour change to blue/black	PPA 1.1 Technique Question Starch turns blue/black in response to the iodide ions turning into iodine							
13b	Line graph showing:	$\frac{1}{2}$ mark: labelling axes $\frac{1}{2}$ mark: correct scales $\frac{1}{2}$ mark: plotting points $\frac{1}{2}$ mark: drawing line							
13c	Time taken decreases	Catalysts speed up a chemical reaction without being used up in the reaction. If the reaction rate is increased, the time taken is reduced.							
13d	$2I^{-} \rightarrow I_{2}$ + $2e^{-}$	$2I^{-} \rightarrow I_{2} + 2e^{-}$ Iodine ions							
14a	Н - -С-С О - Н О-Н	Ethanoic acid as is an carboxylic acid with • 2 carbons in the main chain • a -COOH carboxyl functional group							

	Molecules do not fully	Strong Acid: full dissociation of malagulas to form 11 ⁺ ions				
14b	dissociate into ions	Strong Acid: full dissociation of molecules to form H⁺ ions Weak Acid: partial dissociation of molecules to form H⁺ ions				
		0-30 days pH falls (acidity increases) as carbohydrates turn into ethanoic acid				
14c	Answer to include:	30-60 days pH increases (acidity decreases) as ethanoic acid turns into biogas				
15a	Neutralised when adding further solid it doesn't start fizzing again	$MgCO_3 + H_2SO_4 \rightarrow MgSO_4 + H_2O + CO_2$ or $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$ When the sulphuric acid runs out, $MgCO_3$ or Mg is in excess. To be sure no acid is left, a little extra solid is added to check there is no fizzing (which would indicate there is still acid left)				
15b	Filter excess solid Evaporate solution to get crystals	Filtration: Filtering removes the excess solid added in the neutralisation Evaporation: Boiling the solution removes the water leaving crystals of MgSO $_4$				
16	0.18mol l ⁻¹	no. of mol = volume x concentration = 0.0225 litres x 0.1 mol t ⁻¹ = 0.00225 mol 2NaOH + H ₂ SO ₄ \rightarrow NaSO ₄ + 2H ₂ O 2mol 1mol 0.00450mol 0.00225mol concentration = $\frac{no. of mol}{volume}$ = $\frac{0.00450 \text{ mol}}{0.025 \text{ litres}}$ = 0.18 mol t ⁻¹				
17	HHHH H-C-C-C=C-H HH HH HHHH H-C-C=C-C-H H H H	H H H H H H H H H H H H H H H H H H H				